Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121602, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621315

RESUMO

Emerging microplastics-heavy metal (MPs-HM) contaminants in wastewaters pose an emerging health and environmental risk due to their persistence and increasing ecological risks (e.g., "Trojan horse" effect). Hence, removing MPs in solution and preventing secondary releases of HM has become a key challenge when tackling with MPs pollution. Leveraging the hydrophobic nature of MPs and the electron transfer efficiency from Fe0 to HM, we demonstrate an alkylated and sulfidated nanoscale zerovalent iron (AS-nZVI) featuring a delicate "core-shell-hydrophobic film" nanostructure. Exemplified by polystyrene (PS) MPs-Pb(II) removal, the three nanocomponents offer synergistic functions for the rapid separation of MPs, as well as the reduction and stabilization of Pb(II). The outmost hydrophobic film of AS-nZVI greatly improves the anticorrosion performance of nanoscale zerovalent iron and the enrichment abilities of hydrophobic MPs, achieving a maximum removal capacity of MPs to 2725.87 mgMPs·gFe-1. This MPs enrichment promotes the subsequent reductive removal of Pb(II) through the electron transfer from the iron core of AS-nZVI to Pb(II), a process further strengthened by the introduced sulfur. When considering the inevitable aging of MPs in wastewaters due to mechanical wear or microbial degradation, our study concurrently examines the efficiencies and behaviors of AS-nZVI in removing virgin-MPs-Pb(II) and aged-MPs-Pb(II). The batch results reveal that AS-nZVI has an exceptional ability to remove above 99.6 % Pb(II) for all reaction systems. Overall, this work marks a pioneering effort in highlighting the importance of MPs-toxin combinations in dealing with MPs contamination and in demonstrating the utility of nZVI techniques for MPs-contaminated water purification.


Assuntos
Ferro , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Ferro/química , Poliestirenos/química , Poluentes Químicos da Água/química , Microplásticos/química , Molhabilidade , Metais Pesados/química , Transporte de Elétrons
3.
Chemosphere ; 344: 140343, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37788746

RESUMO

This study aimed to investigate the immobilization efficiency of sulfidated nanoscale zero valent iron on Cr(VI) in soil. Reactions between sulfidated nanoscale zero valent iron and Cr(VI) in soil system and effects of sulfidated nanoscale zero valent iron on microbes had been demonstrated. Solid characterization results confirmed the incorporation of sulfur into nanoscale zero valent iron. Furthermore, the main oxidation products of iron after the reactions were magnetite, goethite and lepidocrocite. Fe-Cr complexes indicated that Cr(VI) was reduced to Cr(III). The results of 16 S rRNA gene analysis indicated that the sulfidated nanoscale zero valent iron had a limited bactericidal effect but further stimulated the sulfite reductase gene population, representing its positive effect for the soil remediation. The study showed that some microflora such as Protobacteria were promoted, while others community such as Firmicutes, were depressed. Furthermore, Cr mainly converted from a high toxic state such as exchangeable (EX) to less bioavailable state such as iron-manganese oxides bound (OX) and organic matter-bound (OM), thus reducing the toxicity of Cr when sulfidated nanoscale zero valent iron was added. High immobilization efficiency of the Cr(VI) compared to nanoscale zero valent iron indicated an improvement on selectivity and reactivity after sulfidation. Overall, sulfidated nanoscale zero valent iron was promising for the immobilization of Cr(VI) immobilization soil.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Ferro , Solo , Poluentes do Solo/análise , Cromo/análise , Poluentes Químicos da Água/análise
4.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747859

RESUMO

High-throughput phenotypic screens leveraging biochemical perturbations, high-content readouts, and complex multicellular models could advance therapeutic discovery yet remain constrained by limitations of scale. To address this, we establish a method for compressing screens by pooling perturbations followed by computational deconvolution. Conducting controlled benchmarks with a highly bioactive small molecule library and a high-content imaging readout, we demonstrate increased efficiency for compressed experimental designs compared to conventional approaches. To prove generalizability, we apply compressed screening to examine transcriptional responses of patient-derived pancreatic cancer organoids to a library of tumor-microenvironment (TME)-nominated recombinant protein ligands. Using single-cell RNA-seq as a readout, we uncover reproducible phenotypic shifts induced by ligands that correlate with clinical features in larger datasets and are distinct from reference signatures available in public databases. In sum, our approach enables phenotypic screens that interrogate complex multicellular models with rich phenotypic readouts to advance translatable drug discovery as well as basic biology.

5.
J Environ Sci (China) ; 118: 140-146, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35305763

RESUMO

Integrating nanoscale zero-valent iron (nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano- and bio-technologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Purificação da Água , Ferro/metabolismo , Águas Residuárias
6.
J Hazard Mater ; 432: 128683, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303665

RESUMO

This study investigates the reaction between sulfidated nanoscale zero valent iron (S-nZVI) and Cr(VI) in the sludge system and explores the effect of S-nZVI on microbes. Results of the batch experiments indicated that the optimal Cr(VI) removal capacity (35.3 mg/g) was reached when the S/Fe ratio was at 0.05. It was about 20-time higher than that of nanoscale zero valent iron (nZVI) (<2.0 mg/g). However, the removal efficiency decreased as the S/Fe molar ratio further increased. Solid characterizations revealed that the S-nZVI consisted of a Fe0 core encapsulated by a flake FeS shell and had a similar "core-shell" structure to that of the nZVI. X-ray photoelectron spectroscopy (XPS) indicated that Cr(VI) was reduced to less toxic Cr(III). In addition, the 16 S rRNA gene and cryo-scanning electron microscopy (cryo-SEM) results showed S-nZVI mildly influenced the initial microbial diversity. Some microflora including Caldiserica, Planctomycetes were promoted, while others groups such as Actinobacteria, Bacteroidetes and Chloroflexi were inhibited: specifically, bacteria such as Proteobacteria (possibly related to sulfide oxidization) began to develop after the S-nZVI feeding. The high Cr(VI) removal efficiency and the mildly influenced microbial diversity make the usage of S-nZVI a win-win solution for Cr(VI) removal in sludge.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Cromatos , Cromo/química , Ferro/química , Esgotos , Poluentes Químicos da Água/química
7.
Cell ; 184(25): 6119-6137.e26, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34890551

RESUMO

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), but our understanding of their drivers, stability, and relationship to therapeutic response is limited. To examine these attributes systematically, we profiled metastatic biopsies and matched organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments (TMEs). Benchmarking models against this reference map, we reveal strong culture-specific biases in cancer cell transcriptional state representation driven by altered TME signals. We restore expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in culture models. Further, we prove that non-genetic modulation of cell state can strongly influence drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of transcriptional plasticity and manipulating cell state to target associated vulnerabilities.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Célula Única
8.
Polymers (Basel) ; 12(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066175

RESUMO

Electret filters are widely used in particulate matter filtration due to their filtration efficiency that can be greatly improved by electrostatic forces without sacrificing the air resistance. However, the attenuation of the filtration efficiency remains a challenge. In this study, we report a novel strategy for producing an electret melt blown filter with superior filtration efficiency stability through a thermally stimulated charging method. The proposed approach optimizes the crystal structure and therefore results in the increased production probability of the charge traps. In addition, the re-trapping phenomenon caused by the thermal stimulation during the charging process can greatly increase the proportion of deep charge to shallow charge and improve the charge stability. A superior electret melt blown filtration material with a high filtration efficiency of 99.65%, low pressure drop of 120 Pa, and satisfactory filtration efficiency stability was produced after three cyclic charging times. The excellent filtration performance indicated that the developed material is a good air filtration candidate component for personal protection applications.

9.
Toxicol In Vitro ; 69: 104988, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32861759

RESUMO

Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to cause cardiotoxicity in animals and humans. It has been demonstrated that PFOS exposure down-regulates expression of cardiac-development related genes and proteins. However, the related mechanism of PFOS has not been fully elucidated. In the present study, the embryonic stem (ES) cells-derived cardiomyocytes (ESC-CMs) was employed to investigate PFOS-mediated mechanism in developmental toxicity of cardiomyocytes. Our previous study shows that PFOS induces cardiomyocyte toxicity via causing mitochondrial damage. Nevertheless, the underlying mechanism by which PFOS affects the autophagy-related mitochondrial toxicity in ESC-CMs remains unclear. Here, we found that PFOS induced the swelling of mitochondria and the autophagosome accumulation in ESC-CMs at 40 µM concentration. PFOS increased the levels of LC3-II, p62, and ubiquitinated proteins. PFOS also induced an increase of LC3 and p62 localization into mitochondria, indicating that mitophagy degradation was impaired. The results of autophagic flux using chloroquine and RFP-GFP-LC3 analysis showed that the accumulation of autophagosome was not caused by the formation but by the impaired degradation. PFOS was capable of blocking the fusion between autophagosome and lysosome. PFOS caused dysfunction of lysosomes because it down-regulated Lamp2a and cathepsin D, but it did not induced lysosome membrane permeabilization. Meanwhile, PFOS-mediated lysosomal function and the inhibitory effect of autophagic flux could be reversed by PP242 at 40 nM concentration, an mTOR inhibitor. Furthermore, PP242 restored PFOS-induced ATP depletion and mitochondrial membrane potential. In conclusion, PFOS induced mitochondrial dysfunction via blocking autophagy-lysosome degradation, leading to cardiomyocyte toxicity from ES cells.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Autofagia/efeitos dos fármacos , Fluorocarbonos/toxicidade , Lisossomos/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Autofagossomos/efeitos dos fármacos , Diferenciação Celular , Células Cultivadas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Transdução de Sinais/efeitos dos fármacos
10.
Gene ; 735: 144276, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31816363

RESUMO

Depression is increasingly threatening human health as a serious psychological problem. However, it is remarkable that the precise mechanism underlying depression remains unelucidated. Recent studies have clarified that non-coding RNA, including but not limited to microRNA, long non-coding RNA, and circular RNA, plays an important role in the pathogenesis of depression. The research results cited in this paper reveal the origin, expression, distribution, function, and mechanism of microRNA in the nervous system. MicroRNA is involved in regulation of life activities, including growth, immune reaction, haematopoiesis, and metabolism, which are significant for maintaining normal physiological functions. Moreover, microRNA plays an important role in cell death and proliferation, development of cancer, and disease prognosis. Here, we also introduce the general research status of long non-coding RNA and circular RNA. Next, descriptive study methods, including fluorescence quantitative polymerase chain reaction, northern blot, microarray technology, RNA-seq, and fluorescent in situ hybridization are discussed. Functional study methods are also summarized and divided into gain- and loss-of-function studies. Moreover, the roles of non-coding RNA in the pathogenesis of depression, including neurogenesis, synaptic plasticity, brain-derived neurotrophic factor expression, HPA axis regulation, neurotransmission, neuropeptide expression, neuro-inflammation, and polyamine synthesis are discussed. Nevertheless, many unknown associations between non-coding RNA and depression remain to be clarified.


Assuntos
Depressão/genética , RNA não Traduzido/genética , Depressão/etiologia , Humanos , RNA não Traduzido/metabolismo
11.
BMC Cancer ; 19(1): 224, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30866863

RESUMO

BACKGROUND: Our previous works have demonstrated that 8-bromo-7-methoxychrysin suppressed stemness of human hepatocellular carcinoma (HCC) cell line SMMC-7721 induced by condition medium from hepatic stellate cell line LX-2 that was activated by liver cancer stem-like cells (LCSCs). However, whether and whereby BrMC inhibits the stemness induced by co-culture of LCSCs and LX-2 cells remains to be investigated. METHODS: The second-generation spheres by sphere culture were identified and used as SMMC-7721-and MHCC97H-derived LCSLCs. SMMC-7721-and MHCC97-derived LCSCs/LX-2 cells transwell co-culture system was treated with BrMC and its lead compound chrysin. The concentrations of IL-6, IL-8, HGF and PDGF in condition medium from co-culture were measured by enzyme-linked immunosorbent assay (ELISA). The stemness of SMMC-7721 cells was evaluated by sphere formation assay and western blot analysis for expression levels of cancer stem cell markers (CD133 and CD44).The expression levels of cancer-associated fibroblast markers (FAP-α and α-SMA) were employed to evaluate pathologic activation of LX-2 cells. Addition of IL-6 and/or HGF or deletion of IL-6 and/or HGF was conducted to investigate the mechanisms for BrMC and chrysin treatment in SMMC-7721-derived LCSLCs co-cultured with LX-2cells. RESULTS: The co-culture of LCSLCs with LX-2 cells increased sphere formation capability as well as expression of CD133 and CD44 in SMMC-7721 cells, meanwhile, upregulated expression of FAP-α in LX-2 cells. ELISA indicated that the concentrations of IL-6 and HGF were significantly elevated in Co-CM than that of condition media from co-cultured SMMC-7721 cells/LX-2 cells. Treatment of BrMC and chrysin with co-cultures of SMMC-7721- and MHCC97H-derived LCSLCs and LX-2 cells effectively inhibited the above responses. Moreover, addition of IL-6 and/or HGF induced stemness of SMMC-7721 cells and activation of LX-2 cells, conversely, deletion of IL-6 and/or HGF suppressed those. Furthermore, the inhibitory effects of BrMC and chrysin on stemness of SMMC-7721 cells and activation of LX-2 cells were attenuated by addition of IL-6 or HGF, and enhanced by deletion of IL-6 or HGF. CONCLUSIONS: Our results suggest IL-6 and HGF may be the key communication molecules for the interaction between LCSLCs and HSCs, and BrMC and chrysin could block these effects and be the novel therapeutic candidates for HCC management.


Assuntos
Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacologia , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Feminino , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Interleucina-8/antagonistas & inibidores , Interleucina-8/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Sci Rep ; 7(1): 11177, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894252

RESUMO

Soil washing is an effective remediation method to remove heavy metals from contaminated soil. However, it produces wastewater that contains large amounts of heavy metals, which lead to serious pollution. This study investigated the removal of vanadium (V) from synthetic soil washing effluent using BOF steel slag. The effects of particle size, slag dosage, initial pH, and initial vanadium concentration on removal behavior were studied. Adsorption kinetics and isotherms were also analyzed. The results showed that the vanadium removal efficiency increased as the steel slag particle size decreased and as the amount of slag increased. The initial pH and vanadium concentration did not play key roles. At the optimum particle size (<0.15 mm) and dosage (50 g/L), the removal rate reached 97.1% when treating 100 mg/L of vanadium. The influence of the washing reagent residue was studied to simulate real conditions. Citric acid, tartaric acid, and Na2EDTA all decreased the removal rate. While oxalic acid did not have negative effects on vanadium removal at concentrations of 0.05-0.2 mol/L, which was proved by experiments using real washing effluents. Considering both soil washing effect and effluent treatment, oxalic acid of 0.2 mol/L is recommended as soil washing reagent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA